Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Asthma ; : 1-10, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38315158

RESUMO

Background: The prevalence of childhood asthma and obesity is increasing, while obesity increases the risk and severity of asthma. Lipid metabolism has been considered as an important factor in the pathogenesis of obesity-associated asthma. Stearoyl-CoA desaturase 1 (SCD1) is a rate-limiting enzyme that catalyzes the production of monounsaturated fatty acids (MUFA).Methods: In the present study, the microarray data retrieved from the Gene Expression Comprehensive Database (GEO) was analyzed to further clarify the impact of SCD1 on Mast cell activation related lipid mediators and the correlation between SCD1 and obesity asthma in the population.Results: SCD1 was highly expressed in IgE-activated bone marrow-derived mast cells (BMMCs). Meanwhile, SCD1 was also verified expressed highly in dinitrophenyl human serum albumin (DNP-HAS) stimulated RBL-2H3 cells. The expression of SCD1 was up-regulated in peripheral blood leukocytes of asthmatic children, and was positively correlated with skinfold thickness of upper arm, abdominal skinfold and body mass index (BMI). Inhibition of SCD1 expression significantly suppressed the degranulation, lipid mediator production, as well as the migration ability in DNP-HAS-stimulated RBL-2H3 cells.Conclusion: SCD1 is involved in obese-related asthma through regulating mast cells.

2.
Cancer Sci ; 115(1): 48-58, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37879607

RESUMO

We previously reported that the inhibition of stearoyl-CoA desaturase 1 (SCD1) enhances the antitumor function of CD8+ T cells indirectly via restoring production of DC recruiting chemokines by cancer cells and subsequent induction of antitumor CD8+ T cells. In this study, we investigated the molecular mechanism of direct enhancing effects of SCD1 inhibitors on CD8+ T cells. In vitro treatment of CD8+ T cells with SCD1 inhibitors enhanced IFN-γ production and cytotoxic activity of T cells along with decreased oleic acid and esterified cholesterol, which is generated by cholesterol esterase, acetyl-CoA acetyltransferase 1 (ACAT1), in CD8+ T cells. The addition of oleic acid or cholesteryl oleate reversed the enhanced functions of CD8+ T cells treated with SCD1 inhibitors. Systemic administration of SCD1 inhibitor to MCA205 tumor-bearing mice enhanced IFN-γ production of tumor-infiltrating CD8+ T cells, in which oleic acid and esterified cholesterol, but not cholesterol, were decreased. These results indicated that SCD1 suppressed effector functions of CD8+ T cells through the increased esterified cholesterol in an ACAT1-dependent manner, and SCD1 inhibition enhanced T cell activity directly through decreased esterified cholesterol. Finally, SCD1 inhibitors or ACAT1 inhibitors synergistically enhanced the antitumor effects of anti-PD-1 antibody therapy or CAR-T cell therapy in mouse tumor models. Therefore, the SCD1-ACAT1 axis is regulating effector functions of CD8+ T cells, and SCD1 inhibitors, and ACAT1 inhibitors are attractive drugs for cancer immunotherapy.


Assuntos
Neoplasias , Ácido Oleico , Camundongos , Animais , Ácido Oleico/farmacologia , Linfócitos T CD8-Positivos , Acetiltransferases , Colesterol , Estearoil-CoA Dessaturase
3.
Int J Mol Sci ; 23(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36361811

RESUMO

Modulation of lipid metabolism is a well-established cancer hallmark, and SCD1 has been recognized as a key enzyme in promoting cancer cell growth, including in glioblastoma (GBM), the deadliest brain tumor and a paradigm of cancer resistance. The central goal of this work was to identify, by MS, the phospholipidome alterations resulting from the silencing of SCD1 in human GBM cells, in order to implement an innovative therapy to fight GBM cell resistance. With this purpose, RNAi technology was employed, and low serum-containing medium was used to mimic nutrient deficiency conditions, at which SCD1 is overexpressed. Besides the expected increase in the saturated to unsaturated fatty acid ratio in SCD1 silenced-GBM cells, a striking increase in polyunsaturated chains, particularly in phosphatidylethanolamine and cardiolipin species, was noticed and tentatively correlated with an increase in autophagy (evidenced by the increase in LC3BII/I ratio). The contribution of autophagy to mitigate the impact of SCD1 silencing on GBM cell viability and growth, whose modest inhibition could be correlated with the maintenance of energetically associated mitochondria, was evidenced by using autophagy inhibitors. In conclusion, SCD1 silencing could constitute an important tool to halt GBM resistance to the available treatments, especially when coupled with a mitochondria disrupter chemotherapeutic.


Assuntos
Glioblastoma , Estearoil-CoA Dessaturase , Humanos , Estearoil-CoA Dessaturase/metabolismo , Fosfolipídeos , Glioblastoma/genética , Autofagia/genética , Sobrevivência Celular/genética
4.
Clin. transl. oncol. (Print) ; 24(2): 288-296, febrero 2022.
Artigo em Inglês | IBECS | ID: ibc-203434

RESUMO

PurposeAnaplastic thyroid carcinoma (ATC) is one of the most aggressive cancers in the world. Stearoyl-CoA desaturase-1 (SCD-1) is one of major enzymes in the de novo synthesis of fatty acids and is related to cancer aggressiveness and poor patient prognosis. The study aimed to construct exosomes loaded SCD-1 interference, investigate its effects and mechanisms on the cell proliferation and apoptosis of ATC cells.MethodsThe expressions of SCD-1 in normal thyroid cell line and ATC cell lines were determined by qRT-PCR and western blotting, respectively. Exosomes were prepared and purification then loaded with SCD-1 siRNA by electroporation and observed by transmission electron microscopy. Higher SCD-1 mRNA and protein levels were found in ATC cell lines compared than normal thyroid cell line (P < 0.05), and both Hth-7 and FRO cells could uptake PKH67-labeled exosomes. The effects of exosomes loaded SCD-1 siRNA on ATC cells were measured by CCK8 assay and apoptosis detection kit.ResultsWhen compared with control group, the cell viability significantly decreased in both two ATC cell lines taken up exosomes loaded SCD-1 siRNA (P < 0.001), and apoptotic and necrotic cells obviously increased (P < 0.05). In order to explore the mechanism of exosomes loaded SCD-1 on ATC, the ROS level was detected by fluorescence reagent. It was found that exosomes loaded SCD-1 siRNA significantly increased intracellular ROS level of ATC cells (P < 0.05).ConclusionsExosomes loaded SCD-1 siRNA inhibited ATC cellular proliferation and promoted cellular apoptosis, and the mechanisms involved maybe the regulation of fatty acids metabolism and ROS level. Our study provides a promising therapeutic strategy for ATC.


Assuntos
Humanos , Ciências da Saúde , Carcinoma Anaplásico da Tireoide , Exossomos , Espécies Reativas de Oxigênio , Neoplasias da Glândula Tireoide , Enzimas , Proliferação de Células/efeitos da radiação
5.
Clin Transl Oncol ; 24(2): 288-296, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34287816

RESUMO

PURPOSE: Anaplastic thyroid carcinoma (ATC) is one of the most aggressive cancers in the world. Stearoyl-CoA desaturase-1 (SCD-1) is one of major enzymes in the de novo synthesis of fatty acids and is related to cancer aggressiveness and poor patient prognosis. The study aimed to construct exosomes loaded SCD-1 interference, investigate its effects and mechanisms on the cell proliferation and apoptosis of ATC cells. METHODS: The expressions of SCD-1 in normal thyroid cell line and ATC cell lines were determined by qRT-PCR and western blotting, respectively. Exosomes were prepared and purification then loaded with SCD-1 siRNA by electroporation and observed by transmission electron microscopy. Higher SCD-1 mRNA and protein levels were found in ATC cell lines compared than normal thyroid cell line (P < 0.05), and both Hth-7 and FRO cells could uptake PKH67-labeled exosomes. The effects of exosomes loaded SCD-1 siRNA on ATC cells were measured by CCK8 assay and apoptosis detection kit. RESULTS: When compared with control group, the cell viability significantly decreased in both two ATC cell lines taken up exosomes loaded SCD-1 siRNA (P < 0.001), and apoptotic and necrotic cells obviously increased (P < 0.05). In order to explore the mechanism of exosomes loaded SCD-1 on ATC, the ROS level was detected by fluorescence reagent. It was found that exosomes loaded SCD-1 siRNA significantly increased intracellular ROS level of ATC cells (P < 0.05). CONCLUSIONS: Exosomes loaded SCD-1 siRNA inhibited ATC cellular proliferation and promoted cellular apoptosis, and the mechanisms involved maybe the regulation of fatty acids metabolism and ROS level. Our study provides a promising therapeutic strategy for ATC.


Assuntos
Exossomos/fisiologia , RNA Interferente Pequeno/fisiologia , Estearoil-CoA Dessaturase/metabolismo , Carcinoma Anaplásico da Tireoide/patologia , Neoplasias da Glândula Tireoide/patologia , Apoptose , Proliferação de Células , Humanos , Células Tumorais Cultivadas
6.
Int J Mol Sci ; 22(1)2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33396940

RESUMO

Obesity is an important aspect of the metabolic syndrome and is often associated with chronic inflammation. In this context, inflammation of organs participating in energy homeostasis (such as liver, adipose tissue, muscle and pancreas) leads to the recruitment and activation of macrophages, which secrete pro-inflammatory cytokines. Interleukin-1ß secretion, sustained C-reactive protein plasma levels and activation of the NLRP3 inflammasome characterize this inflammation. The Stearoyl-CoA desaturase-1 (SCD1) enzyme is a central regulator of lipid metabolism and fat storage. This enzyme catalyzes the generation of monounsaturated fatty acids (MUFAs)-major components of triglycerides stored in lipid droplets-from saturated fatty acid (SFA) substrates. In this review, we describe the molecular effects of specific classes of fatty acids (saturated and unsaturated) to better understand the impact of different diets (Western versus Mediterranean) on inflammation in a metabolic context. Given the beneficial effects of a MUFA-rich Mediterranean diet, we also present the most recent data on the role of SCD1 activity in the modulation of SFA-induced chronic inflammation.


Assuntos
Ácidos Graxos Monoinsaturados/farmacologia , Inflamação/prevenção & controle , Metabolismo dos Lipídeos/efeitos dos fármacos , Obesidade/complicações , Estearoil-CoA Dessaturase/metabolismo , Animais , Humanos , Inflamação/etiologia , Inflamação/metabolismo
7.
Cancers (Basel) ; 11(7)2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-31284458

RESUMO

A distinctive feature of cancer cells of various origins involves alterations of the composition of lipids, with significant enrichment in monounsaturated fatty acids. These molecules, in addition to being structural components of newly formed cell membranes of intensely proliferating cancer cells, support tumorigenic signaling. An increase in the expression of stearoyl-CoA desaturase 1 (SCD1), the enzyme that converts saturated fatty acids to ∆9-monounsaturated fatty acids, has been observed in a wide range of cancer cells, and this increase is correlated with cancer aggressiveness and poor outcomes for patients. Studies have demonstrated the involvement of SCD1 in the promotion of cancer cell proliferation, migration, metastasis, and tumor growth. Many studies have reported a role for this lipogenic factor in maintaining the characteristics of cancer stem cells (i.e., the population of cells that contributes to cancer progression and resistance to chemotherapy). Importantly, both the products of SCD1 activity and its direct impact on tumorigenic pathways have been demonstrated. Based on these findings, SCD1 appears to be a significant player in the development of malignant disease and may be a promising target for anticancer therapy. Numerous chemical compounds that exert inhibitory effects on SCD1 have been developed and preclinically tested. The present review summarizes our current knowledge of the ways in which SCD1 contributes to the progression of cancer and discusses opportunities and challenges of using SCD1 inhibitors for the treatment of cancer.

8.
J Appl Toxicol ; 39(9): 1348-1361, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31231834

RESUMO

CJ-12,918, a 5-lipoxygenase (5-LO) inhibitor, caused cataracts during a 1-month safety assessment studies in rats whereas the structurally similar ZD-2138 was without effect. For CJ-12,918 analogs, blocking different sites of metabolic liability reduced (CJ-13,454) and eliminated (CJ-13,610) cataract formation in both rats and dogs. Using this chemical series as a test set, models and mechanisms of toxicity were first explored by testing the utility of ex vivo rat lens explant cultures as a safety screen. This model overpredicted the cataractogenic potential of ZD-2138 due to appreciably high lens drug levels and was abandoned in favor of a mechanism-based screen. Perturbations in lens sterol content, from a decline in lathosterol content, preceded cataract formation suggesting CJ-12,918 inhibited lens cholesterol biosynthesis (LCB). A 2-day bioassay in rats using ex vivo LCB assessments showed that the level of LCB inhibition was correlated with incidence of cataract formation in animal studies by these 5-LO inhibitors. Thereafter, this 2-day bioassay was applied to other pharmaceutical programs (neuronal nitric oxide synthase, sorbitol dehydrogenase inhibitor, squalene synthetase inhibitor and stearoyl-CoA desaturase-1 inhibitors/D4 antagonists) that demonstrated cataract formation in either rats or dogs. LCB inhibition >40% was associated with a high incidence of cataract formation in both rats and dogs that was species specific. Bioassay sensitivity/specificity were further explored with positive (RGH-6201/ciglitazone/U18666A) and negative (tamoxifen/naphthalene/galactose) mechanistic controls. This body of work over two decades shows that LCB inhibition was a common mechanism of cataract formation by pharmaceutical agents and defined a level of inhibition >40% that was typically associated with causing cataracts in safety assessment studies typically ≥1 month.


Assuntos
Catarata/induzido quimicamente , Colesterol/biossíntese , Colesterol/toxicidade , Inibidores Enzimáticos/toxicidade , Cristalino/efeitos dos fármacos , Cristalino/metabolismo , Tiazolidinedionas/toxicidade , Animais , Animais de Laboratório , Catarata/metabolismo , Cães , Feminino , Masculino , Preparações Farmacêuticas , Ratos , Ratos Sprague-Dawley
9.
Am J Physiol Cell Physiol ; 316(1): C57-C69, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30379578

RESUMO

Osteoporosis is a progressive bone disease characterized by decreased bone mass and density, which usually parallels a reduced antioxidative capacity and increased reactive oxygen species formation. Adipose-derived mesenchymal stem cells (ADMSCs), a population of self-renewing multipotent cells, are a well-recognized source of potential bone precursors with significant clinical potential for tissue regeneration. We previously showed that overexpressing stearoyl-CoA desaturase 1 (SCD-1) promotes osteogenic differentiation of mesenchymal stem cells. Micro-RNAs (miRNAs) are noncoding RNAs recently recognized to play key roles in many developmental processes, and miRNA let-7c is downregulated during osteoinduction. We found that let-7c was upregulated in the serum of patients with postmenopausal osteoporosis compared with healthy controls. Levels of let-7c during osteogenic differentiation of ADMSCs were examined under oxidative stress in vitro and found to be upregulated. Overexpression of let-7c inhibited osteogenic differentiation, whereas inhibition of let-7c function promoted this process, evidenced by increased expression of osteoblast-specific genes, alkaline phosphatase activity, and matrix mineralization. The luciferase reporter assay was used to validate SCD-1 as a target of let-7c. Further experiments showed that silencing of SCD-1 significantly attenuated the effect of let-7c inhibitor on osteoblast markers, providing strong evidence that let-7c modulates osteogenic differentiation by targeting SCD-1. Inhibition of let-7c promoted the translocation of ß-catenin into nuclei, thus activating Wnt/ß-catenin signaling. Collectively, these data suggest that let-7c is induced under oxidative stress conditions and in osteoporosis, reducing SCD-1 protein levels, switching off Wnt/ß-catenin signaling, and inhibiting osteogenic differentiation. Thus, let-7c may be a potential therapeutic target in the treatment of osteoporosis and especially postmenopausal osteoporosis.


Assuntos
Tecido Adiposo/metabolismo , Células-Tronco Mesenquimais/fisiologia , MicroRNAs/biossíntese , Osteoblastos/metabolismo , Estresse Oxidativo/fisiologia , Estearoil-CoA Dessaturase/biossíntese , Tecido Adiposo/citologia , Adulto , Idoso , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Feminino , Humanos , Pessoa de Meia-Idade , Osteogênese/fisiologia , Osteoporose Pós-Menopausa/metabolismo
10.
Iran J Basic Med Sci ; 21(5): 495-501, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29922430

RESUMO

OBJECTIVES: Weight gain and metabolic disturbances such as dyslipidemia, are frequent side effects of second-generation antipsychotics, including olanzapine. This study examined the metabolic effects of chronic olanzapine exposure. In addition, we investigated the hepatic fatty acid effects of olanzapine in female C57BL/6J mice fed a normal diet. MATERIALS AND METHODS: Female C57BL/6J mice orally received olanzapine or normal saline for 7 weeks. The effects of long-term olanzapine exposure on body weight changes, food efficiency, blood glucose, triglyceride (TG), insulin, and leptin levels were observed. Hepatic TG and abdominal fat mass were investigated, and fat cell morphology was analyzed through histopathological methods. The levels of protein markers of fatty acid regulation in the liver, namely fatty acid synthase (FAS) and stearoyl-CoA desaturase-1 (SCD-1), were measured. RESULTS: Olanzapine treatment increased the food intake of the mice as well as their body weight. Biochemical analyses showed that olanzapine increased blood TG, insulin, leptin, and hepatic TG. The olanzapine group exhibited increased abdominal fat mass and fat cell enlargement in abdominal fat tissue. Western blotting of the mouse liver revealed significantly higher (1.6-fold) levels of SCD-1 in the olanzapine group relative to the control group; by contrast, FAS levels in the two groups did not differ significantly. CONCLUSION: Enhanced lipogenesis triggered by increased hepatic SCD-1 activity might be a probable peripheral mechanism of olanzapine-induced dyslipidemia. Some adverse metabolic effects of olanzapine may be related to the disturbance of lipid homeostasis in the liver.

11.
Biol Pharm Bull ; 40(8): 1161-1164, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28768997

RESUMO

The lack of response to leptin's actions in the brain, "leptin resistance," is one of the main causes of the pathogenesis of obesity. However, although high-fat diets affect sensitivity to leptin, the underlying mechanisms of leptin resistance are still an enigma. Here we examined the effect of excess saturated fatty acids (SFAs) on leptin signaling in human neuronal cells. Palmitate, the principle source of SFAs in diet, induced leptin resistance in a human neuroblastoma cell line stably transfected with the Ob-Rb leptin receptor (SH-SY5Y-ObRb). We next investigated the function of stearoyl-CoA desaturase-1 (SCD1), an enzyme which converts SFAs into monounsaturated fatty acids (MUFAs), on leptin-induced signaling. We found that reduction of SCD1 activity, through SCD1 inhibition and knockdown, impairs leptin-induced signal transducer and activator of transcription 3 (STAT3) phosphorylation in human neuronal cells. Our findings suggested that SCD1 plays a key role in the pathophysiology of leptin resistance in neuronal cells associated with obesity.


Assuntos
Leptina/metabolismo , Neurônios/efeitos dos fármacos , Palmitatos/farmacologia , Estearoil-CoA Dessaturase/antagonistas & inibidores , Linhagem Celular Tumoral , Humanos , Neurônios/metabolismo , Fosforilação/efeitos dos fármacos , Interferência de RNA , Receptores para Leptina/genética , Fator de Transcrição STAT3/metabolismo , Estearoil-CoA Dessaturase/metabolismo
12.
Chem Phys Lipids ; 197: 3-12, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26344107

RESUMO

Stearoyl-CoA desaturase 1 (SCD1) is a rate-limiting enzyme in the biosynthesis of monounsaturated fatty acids from their saturated fatty acid precursors. SCD1 introduces a cis-double bond at the Δ9 position (between carbons 9 and 10) of stearoyl (C18:0) and palmitoyl-CoA (C16:0). SCD1 has been shown to be a crucial factor in lipid metabolism and body weight control. In addition, SCD1 inhibitors are claimed to be new treatments for various diseases, such as skin disorders, nonalcoholic steatohepatitis (NASH), hepatitis C virus (HCV), Alzheimer's disease, or cancer. This review aims to summarize the examples of the recently reported novel SCD1 inhibitors and to highlight the emerging areas of target indications that may hold promise for the development of SCD1 inhibitors.


Assuntos
Descoberta de Drogas , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Estearoil-CoA Dessaturase/antagonistas & inibidores , Animais , Humanos , Fígado/efeitos dos fármacos , Neoplasias/enzimologia , Neoplasias/patologia , Pele/enzimologia
13.
Asian-Australas J Anim Sci ; 26(9): 1218-28, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25049903

RESUMO

Fat quality is determined by the composition of fatty acids. Genetic relationships between this composition and single nucleotide polymorphisms (SNPs) in the stearoyl-CoA desaturase1 (SCD1) gene were examined using 513 Korean native cattle. Single and epistatic effects of 7 SNP genetic variations were investigated, and the multifactor dimensionality reduction (MDR) method was used to investigate gene interactions in terms of oleic acid (C18:1), mono-unsaturated fatty acids (MUFAs) and marbling score (MS). The g.6850+77 A>G and g.14047 C>T SNP interactions were identified as the statistically optimal combination (C18:1, MUFAs and MS permutation p-values were 0.000, 0.000 and 0.001 respectively) of two-way gene interactions. The interaction effects of g.6850+77 A>G, g.10213 T>C and g.14047 C>T reflected the highest training-balanced accuracy (63.76%, 64.70% and 61.85% respectively) and was better than the individual effects for C18:1, MUFAs and MS. In addition, the superior genotype groups were AATTCC, AGTTCC, GGTCCC, AGTCCT, GGCCCT and AGCCTT. These results suggest that the selected SNP combination of the SCD1 gene and superior genotype groups can provide useful inferences for the improvement of the fatty acid composition in Korean native cattle.

14.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-565485

RESUMO

Objective To examine the effect of Pu-Erh tea extract(PTE) on genes expression of lipogenesis in white adipose tissue of rats fed high fat diet.Method Thirty male SD rats were randomly divided into three groups(n=10):the control group(basal diet);the high fat group(high fat diet);the PTE group(high fat diet + Pu-Erh tea extract).Body weight and adipose tissue were measured.Expression of genes regulating lipid metabolism was assessed in adipose tissue.Results PTE supplementation prevented diet-induced increases in body weight and adipose tissue.Diacylglycerol acyltransferase-1(DGAT1),stearoyl-CoA desalurase-1(SCD1) and sterol regulatory element binding protein-1c(SREBP-1c) mRNA levels were markedly decreased in adipose tissue of rats fed PTE.Conclusion This study shows for the first time that Pu-Erh tea extract prevents diet-induced obesity,and this effect is partly mediated via a direct influence on adipose tissue.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...